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Abstract. In evolutionary algorithms a common method for encoding
neural networks is to use a tree-structured assembly procedure for con-
structing them. Since node operators have difficulties in specifying edge
weights and these operators are execution-order dependent, an alterna-
tive is to use edge operators. Here we identify three problems with edge
operators: in the initialization phase most randomly created genotypes
produce an incorrect number of inputs and outputs; variation operators
can easily change the number of input/output (I/O) units; and units have
a connectivity bias based on their order of creation. Instead of creating
I/O nodes as part of the construction process we propose using param-
eterized operators to connect to pre-existing I/O units. Results from
experiments show that these parameterized operators greatly improve
the probability of creating and maintaining networks with the correct
number of I/O units, remove the connectivity bias with I/O units and
produce better controllers for a goal-scoring task.

1 Introduction

Neural networks are one of the more common types of controllers used for arti-
ficial creatures and evolutionary robotics [1]. Since representations that directly
encode the weights and connections of a network have scalability problems in-
direct representations must be used for larger networks – although to achieve
better scalability the indirect representation must allow for reuse of the genotype
in creating the phenotype [2]. One type of indirect representation that is becom-
ing increasingly popular for encoding neural networks is to use a tree-structured
genotype which specifies how to construct them. Advantages of indirect, tree-
structured representations are that they better allow for variable sized networks
than directly using a weight matrix, and Genetic Programming style recombi-
nation between two trees is easier and more meaningful than trying to swap
sub-networks with a graph-structured representation.

One of the original systems for encoding neural networks in tree-structured
assembly procedures is cellular encoding [3]. Yet cellular encoding has been
found to have shortcomings due to its use of node operators: subtrees swapped
through recombination do not produce the same subgraphs because node oper-
ators are execution-order dependent and specifying connection weights is prob-
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lematic since node operators can create an arbitrary number of edges [4]. Con-
sequently, of growing interest is the use of edge-encoding commands in which
operators act on edges instead of nodes [5,6,7].

In this paper we point out three different shortcomings of edge-encoding lan-
guages. First, regardless of whether the first N nodes are taken as input/output
(I/O) units or if special node-construction commands are used for creating I/O
units, when creating an initial population it is difficult to ensure that randomly
created genotypes have the correct number of them. A second problem is that as
evolution proceeds the variation operators have a high probability of changing
the genotype so that it produces networks with incorrect numbers of I/O units.
Finally, a more serious problem with tree-structured assembly procedures is the
node creation-order connectivity bias (NCOCB). The NCOCB problem is that
nodes created from edge operators at the bottom of the genotype will have only
a single input and output, whereas nodes created from operators higher up in
the genotype will have a connectivity proportional to 2height.

One way to address the problems of producing the correct number of I/O
nodes and the NCOCB with I/O nodes is by changing the construction lan-
guage. Rather than having commands in the language for creating a new I/O
unit, or assigning the Nth created unit as the ith I/O unit, we propose start-
ing network construction with the desired number of I/O units and then using
parameterized-connection operators for adding edges to these units. Problems in
creating and maintaining networks with the correct number of I/O units are re-
duced since all networks start with the desired number and no commands exist
for creating/removing them. Also, parameterized connection commands mean
that the expected number of connections for all I/O units is equal for randomly
created genotypes and does not suffer from the NCOCB.

In the following sections we first describe a canonical method for using edge
encoding operators to represent neural networks as well as our parameterized
operators for connecting to I/O units. Next we present our experiments which
show the different biases with standard edge-encoding operators and demon-
strate that evolution with the parameterized operators for connecting to I/O
units produces better controllers on a goal-scoring task. Finally we close with a
discussion on the underlying problem with edge operators and tree-structured
representations and a conclusion in which we restate our findings.

2 Encoding Neural-Networks

In this section after describing the type of neural networks that we want to
evolve we then describe a tree-structured representation for encoding them, fol-
lowed by two different methods for handling input and output (I/O) units. The
first method for handling I/O units uses a standard edge-encoding language
(SEEL) and has special commands for creating I/O nodes. Since this method
has problems in creating the correct number of I/O nodes and also has a node
creation-order connectivity bias (NCOCB) we then describe a second method
for handling I/O units. In this second method the initial network starts with
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the desired number of I/O units and operators in the language connect to them
using operator parameters to specify which unit to connect to (PEEL, for pa-
rameterized edge-encoding language).

2.1 Neural Network Architecture

The neural networks used in these experiments are continuous-time, recurrent
networks similar to those of Beer and Gallagher [8], and of our previous work
[9,10]. Each non-input neuron has an input bias, θ, and a time constant, τ . The
activation value of a non-input neuron ai at time t is:

ai,t = τiai,t−1 + (1 − τ)tanh
( ∑

j

Wjiaj,t−1 + θi

)
(1)

For input neurons, their activation value is the value of the corresponding sensor.

2.2 Creating a Network from a Tree

The different methods for encoding neural networks or graphs with a tree-
structured assembly procedure all start with a single node and edge and then
new nodes/edges are added by executing the operators in the assembly proce-
dure. Using an edge-encoding language in which graph-construction operators
act on the edge connecting from unit A to unit B, a typical set of commands
are as follows.

– add reverse creates a link from B to A.
– add split(n) creates a new neuron, C, with a bias of θ = n, and adds a

new link from A to C and creates a new edge connecting from neuron C to
neuron B. The bias of this node is set to θ = n, and the time constant is set
to zero.

– add split cont(m, n) acts the same as add split(), only it creates a con-
tinuous time neuron with a bias of θ = m and a time constant of τ = n.

– connect creates a new link from neuron A to neuron B.
– dest to next changes the to-neuron in the current link to its next sibling.
– loop creates a new link from neuron B to itself. The no-op command per-

forms no operation.
– set weight(n) sets the weight of the current link to n.
– source to next changes the from-neuron in the current link to its next

sibling.
– source to parent changes the from-neuron in the current link to the input-

neuron of the current from-neuron.

Of these commands add split(n) and add split cont(m, n) have exactly
three children commands since after their execution the edge they act on becomes
three edges. The set weight(n) command has no children, consequently it is
always a leaf node and the no-op has either zero or one children so it can be
either a leaf node and halt the development of the graph on the current edge,
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or it can be used to delay execution on the current edge for a round allowing
time for the rest of the graph to develop more. The rest of the commands result
in the addition of a single new edge to the graph so they have exactly two
children commands: one to continue graph construction along the original edge
one command to construction along the new edge.

Using the commands described above the sequence of graphs from figure 1b-i
shows the construction of a network from the genotype in figure 1.a. Graphs are
constructed from this genotype by starting with a single neuron linked to itself,
figure 1.b, and executing the commands in the assembly procedure in breadth-
first order. First, executing split(0.01) adds node b with a bias of 0.01 and
pair of links, figure 1.c. The command set-weight(0.1) sets the weight of the
link −→aa to 0.1, no-op performs no operation, and then split(0.02) results in
the creation of neuron c with a bias of 0.02 and two more links, figure 1.d.
Source-to-parent creates a second link −→

ab, and set-weight(0.2) sets the
weight of the link −→

ba to 0.2, figure 1.e. The second source-to-parent command
creates the link −→ac, executing set-weight(0.3) sets the weight of the link −→ca
to 0.3 and set-weight(-0.2) results in a weight of -0.2 assigned to the link−→
ab, figure 1.f. The source-to-next command results in the link −→

bb being cre-
ated, figure 1.g. The command set-weight(0.4) sets the weight of link −→

bc to
0.4 and then executing connect creates an additional link −→ac, figure 1.h. Ex-
ecuting set-weight(0.5) sets the weight of link −→

ab to 0.5, set-weight(0.6)
sets the weight of link −→

bb to 0.6, no-op sets the weight of link −→
ab to 0.0, and

set-weight(0.7) sets the weight of link −→ac to 0.7, figure 1.i. In addition, after
all tree-construction operators have been executed, there is a pruning phase that
consolidates the weights of links with the same source and destination neurons,
figure 1.j, and removes hidden neurons that are not on a directed path to an
output neuron.

2.3 Standard Edge Encoding Language

The graph-construction language of the previous sub-section can be used to
create neural networks either by assigning the first n units as I/O units or by
adding commands specifically for creating I/O units. Assigning arbitrary units
to be I/O units has the drawback that changes in the genotype can add/delete
units in the network so that units shift position and what was a the ith input unit
in the parent becomes the i + 1 input unit in the child. To avoid this disruption
the SEEL we use has specialized commands for creating I/O units.

I/O units are created through the use of the add input and output split(n)
commands. Since these are edge operators, we label the edge they are associated
with to be from the vertex A to the vertex B. Executing the add input command
creates a new input unit and an edge connecting from this unit to A. Output
units are created with the output split(n) command, which performs a split
on the existing edge and the newly created neuron is set as an output unit with
a bias of θ = n.
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Fig. 1. A tree-structured encoding of a network (a), with dashed-lines to separate the
layers, and (b-j) construction of the network it encodes.
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2.4 Parametric Edge Encoding Language

A method to remove the connectivity bias with I/O nodes is by having these
nodes exist in the initial graph and then adding connections to them, such as
with the commands connect input(i) and connect output(i). Labeling the
current edge as connecting from unit A to unit B, connect input(i) creates a
link from the ith input neuron to B and connect output(i) creates a link from
B to the ith output neuron. Since each of these commands creates a new edge,
both commands have exactly two children operators: one to continue network
construction along the original edge and one to construct along the new edge.

3 Experiments

In this section we present our experiments comparing SEEL with PEEL. First
we show that randomly created genotypes using SEEL have problems producing
networks with the desired number of I/O neurons whereas this problem is greatly
reduced when using PEEL. Next we show that networks encoded with PEEL are
more robust to maintaining the correct number of I/O units under mutation and
recombination than are networks encoded with SEEL. In our third set of experi-
ments we demonstrate the existence of the node creation-order connectivity bias.
Finally, we demonstrate that using PEEL results in better neural-controllers for
the evolution of a goal-scoring behavior.

3.1 Initialization Comparison

One benefit of starting with the desired number of I/O neurons is that randomly
created, network-constructing, assembly procedures are more likely to have the
correct number of I/O neurons. This can be shown by comparing the number of
valid networks created using both network construction languages. A network is
considered valid if it has four input neurons and four output neurons (arbitrary
values selected for this experiment) and for each input neuron there is a path to
at least one output neuron and each output neuron is on a path from at least
one input neuron. Table 1 shows the number of valid networks created from ten
thousand randomly created assembly procedures for various tree depths. From
this table it can be seen that valid networks are significantly more likely to be
created with PEEL than with SEEL. The reason PEEL does not score 100%
even though it starts with the correct number of I/O neurons is because some
input neurons may not be on a path to an output neuron.

3.2 Variation Comparison

In addition to the problem of creating initial individuals with the correct number
of I/O units, SEELs have difficulty maintaining these numbers under mutation
and recombination. To show that PEELs better maintain valid networks we
compare the number of networks that still have four inputs and four outputs
after mutation and recombination from valid parents.
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Table 1. Number of valid networks generated out of ten thousand randomly created
tree-structured assembly procedures.

Depth ≤4 5 6 7 8 9 10 11 12 13
SEEL 0 3 103 183 93 34 13 6 2 0
PEEL 0 0 12 314 1973 4657 6733 8072 8643 8848

For this comparison the mutation operator modifies an individual by chang-
ing one symbol with another, perturbing the parameter value of a symbol,
adding/deleting some symbols, or recombining an individual with itself. Two
types of recombination are used, with equal probability of using one or the
other. The first recombination operator is the standard GP recombination that
swaps random subtrees between parents [11]. The second recombination opera-
tor is similar to one-point crossover [12] and we call it matched recombination
(MR). MR works by lining up two trees and, starting at the root, matches up
the children nodes by type and argument values, finds the locations at which
subtrees differ and then picks one of these places at random to swap.

Since random trees of depth seven produced the most valid networks with
SEEL, we compared ten thousand mutations and recombinations between SEEL
and PEEL on valid, randomly created individuals. With SEEL mutation had a
success rate of 84.8% and recombination had a success rate of 79.2%. In com-
parison, with PEEL mutation produced valid children 93.5% of the time and
recombination did so 89.5% of them. These results show that networks encoded
with a PEEL are more robust to variation operators.

3.3 Node Creation Order Connectivity Bias

A more serious problem with tree-structured assembly procedures is the node
creation-order connectivity bias (NCOCB). Nodes created from commands early
in the construction process tend to have a greater number of edges into and out
of them then nodes created later in the the process. One consequence of this bias
is that I/O neurons that are created early in the construction process will have
a significantly higher number of outputs/inputs than those I/O neurons created
at the end of the construction process.

The graph in figure 2.a shows the average connectivity (sum of inputs and
outputs) of a node plotted against its creation order. From this graph it can be
seen that nodes created earlier in the construction process have more connections
than those created later and most nodes only have two connections: one input
and one output link. Thus if I/O nodes are created by the tree-structured assem-
bly procedure, the first I/O nodes will have significantly more inputs/outputs
from/to them than those created later in the construction process. For input
neurons, this suggests that the first inputs are likely to have a greater influence
on the behavior of the network than the latter inputs and for output neurons this
suggests that more processing of inputs is happening for the activation values of
the first output neurons than for the latter output neurons.
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Fig. 2. Graphs of (a) the average node connectivity by order of creation, and (b) the
number of nodes with a given connectivity for randomly created individuals.

Because the connectivity of a node is strongly biased by its height in the tree-
structured assembly procedure and since most commands are near the leaves in
the tree this results in a bias in the distribution of the number of nodes with a
given connectivity. Most nodes in the network will have a connectivity of two –
one input and one output – and the number of nodes with a given connectivity
decreases exponentially (figure 2.b).

3.4 Comparison on Evolving a Goal-Scoring Behavior

While PEEL has been shown to be better than SEEL for removing various
biases, of practical importance is whether evolution with PEEL produces better
controllers than evolution with SEEL. To test this we evolve neural-controllers
for a goal-scoring task.

Goal-scoring takes place in a computer-simulated, 275x152.5 walled, soccer
field with goals at each end (figure 3.a). Inside the soccer field is a two-wheeled,
soccer player which has seven sensor inputs (three sensors to detect distance to
the wall (one pointing directly in front and the other two at 30◦ to the left and
right), and four sensors that return angle to the ball, distance to the ball, angle
to the goal and distance to the goal) and two outputs (desired wheel-speed for
the left and right wheels) (figure 3.b).

Evaluating an individual consists of summing the score from eight trials, two
each with the ball initially placed in each of the four corners of the field, and
the soccer-player placed in the middle of the field. Initial locations for both the
player and ball are perturbed by a small random amount and then the player
is given 60 seconds (at 30fps this results in 1800 network updates) to score as
many goals as it can. For each goal scored the distance from the vehicle’s starting
position to the ball plus the distance from the ball’s initial location to the goal is
added to the network’s score. After a goal is scored the ball is randomly located
at the center of the field (±30, ±30), the minimum distances to the ball and to
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Wall sensors

Goal sensor

Ball sensor

(a) (b)

Fig. 3. (a) The soccer field and (b) the soccer player and its sensors.

the goal are reset, and the network is allowed to try to score another goal. Once
time runs out, a network’s score is increased by how much closer it moved the
player to the ball and how much closer it moved the ball to the goal. In addition,
if the player scores an own-goal, its score is reduced by the distance it moved
the ball from its starting position to the goal.

To perform these experiments the EA was run on a Linux-PC with evalua-
tions farmed out to five PlayStation©R 21 development systems. Each experiment
consisted of evolving fifty individuals for fifty generations. A generational EA
was used and new individuals were created with equal probability of either mu-
tation or recombination and an elitism of three. Evaluating one generation of
fifty individuals took approximately four minutes. The results of experiments are
shown in figure 4 and show that evolution with PEEL produces soccer players
almost twice as fit as with SEEL.
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Fig. 4. Fitness of the best evolved goal-scores averaged over four trials.

1 PlayStation is a registered trademark of Sony Computer Entertainment Inc.
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The higher fitness of networks encoded with PEEL is reflected in the be-
haviors produced by these networks. Networks encoded with SEEL produced
soccer players that tended to spin in place and move awkwardly or in a looping
pattern. These networks only moved toward the ball somewhat haphazardly and
generally did not appear to be aiming their shots. In contrast, networks encoded
with PEEL would move to position themselves on the other side of the ball from
the goal and then either push the ball toward the goal or spin to kick it toward
the goal. The best of these networks seldom missed in its shots and an example
of its behavior is shown in the sequence of images in figure 5.

4 Discussion

While the results of the experiments section show that various biases hold for
the edge-encoding languages presented here, of interest is the degree to which
these biases exist in other edge-encoding languages. The edge-encoding language
of section 2 differs from Luke’s [4] in that edges are not explicitly deleted, rather
they disappear if they are not assigned a weight, and the split command does
not delete the link −→

ab when it creates the new neuron c and links −→ac and −→
cb. A

command for explicitly deleting links would not necessarily change the biases in
resulting networks since the no-op command with no children has the same ef-
fect. In contrast, since the split operator used here adds links to existing neurons
without removing any, it should produce a larger bias than Luke’s split operator.
Although the differences in operators between different edge encoding languages
affect the degree of connectivity bias that can be expected, the main cause of
the biases is the tree-structure of the representation. When a neuron is created
it has a single input and output edge. Since edge operators can add one input or
output to an existing neuron (except for the loop command, which adds both
an input and an output) the expected connectivity of a neuron is on the order
of 2height.

Since PEEL only addresses the NCOCB for I/O units and does not scale
for large networks the direction to go for addressing the various shortcomings
of edge encodings is not clear. One way to remove the NCOCB is to change
from tree-structured to graph-structured genotypes, but then there are difficul-
ties in creating meaningful recombination operators. Another way is to switch
to operators in which the connectivity of a new node is not dependent on its
depth in the genotype; but these would be node operators which have their own
shortcomings [4].

5 Conclusion

In this paper we identified three shortcomings with typical edge encoding op-
erators for representing neural networks: individuals created at random in the
initialization phase do not usually have the correct number of inputs/outputs;
variation operators can easily change the number input/output neurons; and the
node creation-order connectivity bias (NCOCB). To address these problems we
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. An evolved goal-scorer in action: (a)-(c) the soccer-player circles around the
ball; (d) it pushes the ball toward the goal; (e)-(f), while the ball is going into the goal
the player moves to the center of the field where the ball will re-appear after the goal
is scored.

proposed using parameterized operators for connecting to input/output units
and demonstrated that evolution with these operators produces better neural
networks on a goal-scoring task. While these parameterized operators greatly
improve the probability of creating and maintaining networks with the correct
number of input/output units it does not address the NCOCB problem for hid-
den units. Consequently the contribution of this paper is more an observation
that these shortcomings exist. Future work with edge encoding operators will
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need to address more general solutions to these problems that scale with the
size of the network and work for hidden units.
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